Identification of Amino Acid Residues in the α, β, and γ Subunits of the Epithelial Sodium Channel (ENaC) Involved in Amiloride Block and Ion Permeation

نویسندگان

  • Laurent Schild
  • Estelle Schneeberger
  • Ivan Gautschi
  • Dmitri Firsov
چکیده

The amiloride-sensitive epithelial Na channel (ENaC) is a heteromultimeric channel made of three alpha beta gamma subunits. The structures involved in the ion permeation pathway have only been partially identified, and the respective contributions of each subunit in the formation of the conduction pore has not yet been established. Using a site-directed mutagenesis approach, we have identified in a short segment preceding the second membrane-spanning domain (the pre-M2 segment) amino acid residues involved in ion permeation and critical for channel block by amiloride. Cys substitutions of Gly residues in beta and gamma subunits at position beta G525 and gamma G537 increased the apparent inhibitory constant (Ki) for amiloride by > 1,000-fold and decreased channel unitary current without affecting ion selectivity. The corresponding mutation S583 to C in the alpha subunit increased amiloride Ki by 20-fold, without changing channel conducting properties. Coexpression of these mutated alpha beta gamma subunits resulted in a non-conducting channel expressed at the cell surface. Finally, these Cys substitutions increased channel affinity for block by external Zn2+ ions, in particular the alpha S583C mutant showing a Ki for Zn2+ of 29 microM. Mutations of residues alpha W582L, or beta G522D also increased amiloride Ki, the later mutation generating a Ca2+ blocking site located 15% within the membrane electric field. These experiments provide strong evidence that alpha beta gamma ENaCs are pore-forming subunits involved in ion permeation through the channel. The pre-M2 segment of alpha beta gamma subunits may form a pore loop structure at the extracellular face of the channel, where amiloride binds within the channel lumen. We propose that amiloride interacts with Na+ ions at an external Na+ binding site preventing ion permeation through the channel pore.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gamma subunit second transmembrane domain contributes to epithelial sodium channel gating and amiloride block.

The epithelial sodium channel (ENaC) is comprised of three homologous subunits. Channels composed solely of α- and β-subunits (αβ-channels) exhibit a very high open probability (Po) and reduced sensitivity to amiloride, in contrast to channels composed of α- and γ-subunits or of all three subunits (i.e., αγ- and αβγ-channels). A mutant channel comprised of α- and β-subunits, and a chimeric γ-su...

متن کامل

Identification of Amino Acid Residues in the a , b , and g Subunits of the Epithelial Sodium Channel (ENaC) Involved in Amiloride Block and Ion Permeation

The amiloride-sensitive epithelial Na channel (ENaC) is a heteromultimeric channel made of three abg subunits. The structures involved in the ion permeation pathway have only been partially identified, and the respective contributions of each subunit in the formation of the conduction pore has not yet been established. Using a site-directed mutagenesis approach, we have identified in a short se...

متن کامل

1 The epithelial sodium channel δ subunit : new notes for an old song 2

20 Amiloride-sensitive epithelial Na channels (ENaC) can be formed by different combinations of 21 four homologous subunits, named α, β, γ and δ. In addition to providing an apical entry pathway for 22 transepithelial Na reabsorption in tight epithelia such as the kidney distal tubule and collecting duct, 23 ENaCs are also expressed in non-epithelial cells, where they may play different functio...

متن کامل

The epithelial sodium channel δ-subunit: new notes for an old song.

Amiloride-sensitive epithelial Na(+) channels (ENaCs) can be formed by different combinations of four homologous subunits, named α, β, γ, and δ. In addition to providing an apical entry pathway for transepithelial Na(+) reabsorption in tight epithelia such as the kidney distal tubule and collecting duct, ENaCs are also expressed in nonepithelial cells, where they may play different functional r...

متن کامل

Conserved charged residues at the surface and interface of epithelial sodium channel subunits--roles in cell surface expression and the sodium self-inhibition response.

The epithelial sodium channel (ENaC) is composed of three homologous subunits that form a triangular pyramid-shaped funnel, anchored in the membrane with a stem of six transmembrane domains. We examined the structure-function relationships of 17 conserved charged residues on the surface of the ectodomain of human γ-ENaC subunit by alanine mutagenesis and co-expression with α- and β-ENaC subunit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 109  شماره 

صفحات  -

تاریخ انتشار 1997